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ABSTRACT

The expansions of algebraic functions can be computed "fast" using the

Newton Polygon Process and any "normal" iteration. Let M(j) be the number

of operations sufficient to multiply two jth degree polynomials. It is

shown that the first N terms of an expansion of any algebraic function de-

fined by an nth degree polynomial can be computed in O(n(M(N)) operations,

while the classical method needs O(Nn) operations. Among the numerous ap-

plications of algebraic functions are symbolic mathematics and combinatorial

analysis. Reversion, reciprocation, and nth root of a polynomial are all

special cases of algebraic functions.
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1. INTRODUCTION

Let

(1.1) P(W,z) = A (z)W + ... (

where the Ai(z) are polynomials over a field A. In general we shall take A

ito be the field of complex numbers; an exception being Section 7. (Many of

the results hold for an algebraically closed field of characteristic 0.)

Without loss of generality we assume A0(z) ft 0 and An (z) f 0. Capital letters

will denote polynomials or series; lower case letters will denote scalars.

The zero of (1.1), a function S(z) such that P(S(z),z) =- 0, is called

the algebraic function corresponding to P(W,z). Let z0 be an arbitrary

complex number, finite or infinite. It is known from the general theory of

algebraic functions that S(z) has n fractional power series expansions around

z0 . By the computation of an algebraic function we shall mean the computa-

ton of the first N coefficients (including zero coefficients) of one of its

expansions. (This will be made precise in Section 3.) The problem we study

in this paper is the computation of one expansion of the algebraic function.

Our results can easily be modified for computing more than one expansion or

all expansions of the algebraic function.

As described in most texts, the classical method computes algebraic

functions by comparison (q coefficients. It is not difficult to show that

the method can take O(Nn ) operations, where n is the degree of P(Wz) with

respect to w. Hence the classical method is very slow when n is large.

'The maui result of this paper is that every algebraic function can be

computed fast. Let M(N) denote the number of operations sufficient to multiply

two Nth degree polynomials over the field A. Let C(N) be the number of opera-

tions needed to compute any algebraic function. We prove that

C(N) = O(nM(N)).
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2
Since M(N) = O(N2 ) (or M(N) = O(N log N) if the FFT is used), our algorithms

are considerably faster than the classical method even for moderate n. It is

an open problem whether or not a general algebraic function can be computed

in less chan O(M(N)) operations.

The "fast computatiun" of the title is because the coefficients of a

"regular" problem can always be computed fast by iteration (Section 5) and

the general problem can b,. reduced to a regular problem (Section 6) with

cost independent of N.

Brent and Kung [1976] showed that the cost for reversion of a polynomial,

which is a very special case of n algebraic function (see discussion later

in this section), is O((N log N) M(N)). We stated above that the cost of

expanding an algebraic function is O(nM(N)). These results are reconciled

by the observation that we are considering the case that the degree n of

P(W,z) with respect to W is fixed and independent of N, while Brent and Kung

considered the case where n = N.

There are known examples of fast computation using Newton-like iteration

in settings such as algebraic number theory (Bachman 1964]), power series

computation (Kung [1974]. Brent and Kung [1976]), and the Zassenhaus construc-

tion in p-adic analysis (Yun [1976]). Fast computation of algebraic functions

raises certain issues not present in these other settings; see especially

Section 6. As we will see in Section 5, there is nothing special about Newton-like

iteration; any "normal iteration" can be used.

Although the complexity results are stated asymptotically, Theorems 5.1

and 6.1 give non-asymptotic analyses of the algorithms. Hence various non-

asymptotic analyses can also be carried out.

We are .nterested in the computation of algebraic functions for a nut--

ber of reasons. These include
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1. A number of problems where fast algorithms are known are special

cases of algebraic functions. (Hore details are given below.)

2. There are numerous applications. For example, many generating

1functions of combinatorial analysis and functions arising in
mathematical physics are algebraic functions. The integrands of

elliptic and more generally Abelian integrals are algebraic func-

tions. See Section 9 for au exanple.

3. Algorithms for expanding algebraic functions are needed in &ystems

for symbolic mathematics such as IJACSYMA (Moses [1974]).

4. Algebraic functions are of theoretical interest in many areas of

mathematics. These include integration in finite terms (Ritt [1948]),

theory of plane curves (Walker [1950]), elliptic function theory

(Briot and Bouquet [1859]), complex analysis (Ahlfors [1966], Saks

and Zygmund [1971]), and algebraic geometry (Lcf2zchetz [1953]).

Algebraic function theory is a major subject in its own right. See,

for example, Bliss [1933] and Eichler [1966].

We exhibit special cases of algebraic functions where fast algorithms

are known.

A. Reciprrcal of a polynomial:

P(W,z) - Al(z)W - 1. (See Kung [1974].)

(Actually Kung uses P(W,z) = W - Al(z) which is not of the form

(1.1), and allows A (z) to be a power series.)

B. nth root of a polynomial:

P(W,z) = Wn - A0 (z). (See Brent [1976, Section 13] where the Af(z)

is allowed to be a power series.)
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C. Reversion f a polynoial:

Let f be a g.ven polynomial with zero constant term. We seek a function g

such that f(g(z)) = z. To see this is a special case of an algebraic func-.

ni n-l
tion, let f(x) = anX + anlx + ... + alx. Then we seek g(x)

such that angn(z) + ... + alg(z) - z = 0. This is an instance of

our general problem with Ai(z) = ai, i1l,...,n, A0(z) = -z.

See Brent and Kung [1976).

We summarize the results of this paper. In Section 2 we show that

without loss of generality we can take z0 = 0 and assume An(0) / 0. Nota-

tion is established and a few basic facts from algebraic function theory

are summarized in Section 3. The concept of normal iteration is introduced

in Section 4 and convergence of normal iterations for regular problems is

established in Section 5. In Section 6 we state and analyze the Newton

Polygon Process, which reduces the general problem to a regular problem.

A symbolic mode of computation with exact arithmetic

is introduced in Section 7. Section 8 shows that C(N) O(nM(N)). In Section

9 we give a number of examples, several of which are more general than the

theory of the preceding sections. The final section discusses

extensions of the work presented here.

In this paper we analyze algorithms under the assumption that the coef-

ficient of power series are "non-growing", e.g., all coefficient computations

are done in a finite field or in finite-precision floating-point arithmetic.

An analysis dealing with va:iable-precision coefficients is yet to be performed.
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Choose non-negative integers LL and X to satisfy the follo-,ing conditions:

a + ord(An n ,

I L + ord(Ai ) > iX, i=l,...,n-l.

Let

P(W,z) -- zP(W/z ,z).

Then the coefficients of P(W,z), (z), are polynomials with An(0) # 0, and

S(z) has only expansions with non-negative powers. Since the e-<pansions of

S(z) are those of S(z) divided by z it suffices to compute expansions of

S(z). For the remainder of this paper, we therefore assume tnat A (0) 4 0.
n

(One should note, however, that the results of Section 5 hold without the

assumption.)
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3. FACTS FROM ALGEBRAIC FUNCTION THEORY

We introduce some notation and state a basic result of algebraic func-

tion theory which characterizes the expans'.ons of the algebraic function

corresponding to

P(W,z) = A (Z)Wn + ... + A0 (z).
n0

There exist r positive integers dl,...,d such that d, + . + d = n and the

poiieineesr r.

expansions of the algebraic function are given by

d
(3.1) S (z) = F z

for i=l,...,r and j=O,...,d.-1, where iis a primitive dith root of unity

and the s, are complex numbers. For each L, the expansions S

j=o,...,d -1, are said to constitute a cycle.

The problen. considered in this pLper is to compute one expansion of an

algebrai- function. For notational convenience, let the expansion be denoted

by

S(z) = j s. z .

Hence our problem can be formulated as that of computing the value of d and

the coefficients sOsl , .... (In this paper S(z) represents either an alge-

braic function or one of its expansions, depending upon the

coatext.) Note that since

P(S(z.),z) =_ 0,

we have
P(soO) = 0.
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Thus, s is a zero of the numerica. polynomial P(W,O). We say our

problem is regular with respect to s if s o s a simple zero of P(WO).

(In this definition, we allow An (0) to be 0 .) For a regular problem, we

have d = 1, that is, the expansion S(z) is an integral power series. In

Section 5, we shall show that a regular problem can always be solved by

iteration. In Section 6, we shall show how the general problem can be

transformed to a regular problem.



4. NORMAL ITERATIONS

We introduce the concept of a normal numerical iteration. We give a

novel definition of the order of a normal iteration which is convenient for

the application to power series iteration. In the following section we will

show that a normal iteration with order greater than unity will always con-

verge ii used for a regular problem.

Let p(w) be the numerical polynomial P(W,3), let s be a zero of p(w), and

let e(i) = w (i) - s denote the error of the ith iterate. To motivate the

definition of normal iteration we first consider two examples.

Example 4.I. Newton Iteration

w(i+l) =w wi) . p(w )
p, (w (i)
pt

From the Taylar series expansions

( (s) e + 2 +

and
)(w p' (s) + p"( )

we have

(4.1) e (i+l) p"(s) () ))2 c (0(i))j
Sp' (s)+

j=3

where th3 c are rational expressions of the derivatives of p at s, with

powers of p' (s) as the denominators.

Example 4.2. Secant Iteration

( i + l )  w( i )  w(i)-w( i - l ) ,
pw W ) p w~ ' '
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Using the Taylor series expansions of p(w ) and p(w i  ), we obtain

(4.2) e(i+l) - p"s~) e (i) e(i-I) • i))J(
2p'(s) e+ I tj (

j+W23
j , z2 1

where the cj are rational expressions of the derivatives of p at s, with

powers of p'(s) as the denominators. U

Consider now a general iteration

(4.3) (i+l) =(w (i) (i- 1) (i-r)
W43 wX.7 ,... ,wi'),

which is defined in terms of rational expressions of p and its derivatives.

Assume that by using Taylor series expansions, we can derive

J0 jm
(4.4) e(i+l) = c. • (ei) 0 (im)m

(e ) ...(ei 0

where the c. . are rational expressions of the derivatives of p at s.

Definition 4.1. I is said to be a normal iteration if the denominator of

each c. is a power of p'(s).
J0' ' "'m

From (4.1) and (4.2) we have that both Newton iteration and secant itera-

tion are normal. In fact, most commonly used iterations normal. We

prove that the classical one-point inverse interpolatory iterations t 0 (see

Traub [1964, Section 5.1]; in particular, '2 is the Newton itc.ation) are
(i) (il

normal. Let q denote the inverse function to p and v p(w Then

q(O) q~v'~ q (v~) i 1,,(v(i) (i)
q(0) q(v (i ) - (i))v(i ) + iq (v )(v ) + ...
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By definition of *p
s (W(=  + E1 j' j (v (i)) (p(W (i)))

P L, J'.

and P

e j . (j (i) ) ON (i) J .

j ztp

Note that

p(w(i) = p'(s)e (i) 1" (i))2 +

(j)(i (k) ()
and that q (v) is a rational expression of p (w £)) for k=l,...,j andha tedeomnto ('(w(i . (k) (i

has the denominator (p'(w(i))) j . Expanding the p (w ( )) around s shows

that *r is a normal iteration.
p

Definition 4.2. For a normal iteration r defined by (4.3) and satisfying (4.4),

we define the order o of by

P = suprlrm+l j0r l + j r "rn1 + + Jm for all (J0,.... m

such that cj 0 . 0 for some polynomial p.3 U

By (4.1), it is easy to check that the Newton iteration has order 2.

In general, it can be shown that the one-point inverse interpolatory iteration

P has order p. Consider now the secant iteration. By (4.2), the order of

the iteration is given by

2
0 = supfrjr < jr + A for all j,A 2 1),

which is equivalent to 0 = suptrjr2 - r + I). Hence p is the positive root

2
of r = r+l, i.e.. = (1+JF)/2.
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S. REGULAR PROBLEMS: NORMAL ITERATIONS ON P(MER SERIES

We show how normal numerical iterations with order greater than unity (;In

always compute an expansion of nn algebraic function for a regular problem.

The main result is Theoreii 5.1. As a corollary of this theorem we show that

a Newton-like iteration always "converges quadratically". We also showv the

convergence of a secant-like iteration. We end the section with an example

of a convergent first order iteration.

We begin with some definitions. Recall that a meromorphic series is a

power series with a finite number of negative powers.

Definition 5.1. Given a meromorphic series A(z) and a real. number C, then

by the notation

B(z) - A(z) (mod z )

we mean B(z) is a finite series consisting of all terms of A(z) of degree < ,.

Let * be a normal numerical iteration. Let the numbers w(I) w(i-. )

in (4.3), the definiing relation for i;, he replaced by meromorphic ,,ories

Wi(z) ,...,W ( '  
. Then the iterate W ( i + 1(z) d,,fined by

14(J (1 M ! W ' . . . , W  W ) z '

i.s in general a merono'w 1, ic series, providod that i t i'; 'el 1-def id . let

E(i) (z) = ,V(i)O() - S (z) dc',,te the erro" ,: the ith iterate.

Definition 5.2. Wo say .,n iteration on meromorphic ,ries conV's i
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Remark 5.4. Note that in Theorem 5.1 we need not assume that A (0) 0.
n

This fact will be used in the proof of Theorem 6.1.

We apply Theorem 5.1 to two specific iterations. We begin with a

Newton-like iteration, which is defined by (5.3) below. This iteration is ob-

tained from the numerical Newton iteration. In the power series setting we

hesitate to call it Newton iteration, since Newton [1670] actually used a dif-

ferent method for computing the expansion. His method computes one coeffici-

ent per iteration and in general is not as efficient as the Newton-like

iteration defined below. We will discuss the Newton-like iteration in some

detail since we anticipate it will be one of the most commonly used iterations

in practice. Here and elsewhere we use the notation P' (W,z) = - (,z). Re-

call that the numerical Newton iteration is a normal iteration of order 2.

From Theorem 5.1 we have

Corollary 5.1. If

(i) P(s0,0) 0 and P'(s0,0) # 0,

(ii) W(0) so, i.e., ord(E (0 )) 1,

then the iterates W (i) generated by the Newton-like iteration,

(5.3) W (z) W( i ) (z) - p(W  (z),z) (mod z 2 )

are well-defined and satisfy

(5.4) ord(E 
( i ) 2 i

for i=0,1,2,..., and hence the iteration converges.

A result similar to Corollary 5.1 has been proven independently by

Professor J. Lipson (Private Communication).
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p -:oot. 1 e need onl.y ,how that the iteratinns R j(7. are all eol-defined.

This holds since for all i the constant term in 1" ('1 ,z) is P (soO),

which is non-zero. U

Remark 5.5. If we define the valuation of a power series A(z) to be bord
(A )

where b is any positive constant, then Corollary 5.1 follows from a known

theorem in valuation theory (see Bachman £1964, Ch. II, Theorem 4.2]).

It is easy to sbow that if S(z) is a polynomial of degree q, then itera-

tion (5.3) wilt comouf:, it in .1og 2 qj + I iterations. By a slight modifica-

tion of the hypotheses of Corollary 5.1 we can replace the inequality (5.4)

by equality.

Corollary 5.2. If

(i) P(So 0,O) 
= O1 P'(SoO) 0 0, P"(so,0) # 0,

S(ii) W ( 0 ) = SO, era Q3(0)) = ,

then the iterates generated by the Newton-like iteration satisfy ord(E(i)) 2'. U

Corollaries 5.1 and 5.2 can easily be generalized to any one-point in-

verse interpolatory iteration "

As our second example we consider a secant-like iteration. One has to

be somewhat careful in defining this iteration. A straightforward approach

waild generate iterates by

(5.5) 14( i + l ) t- 4~i M P)Ww(i)l(mod+z

P ( i  sd

=where l(+,)'/2. Then W ( 11) becomes undefined when W(i) = M Ts

happens when there is a "large" gap between the degrees of two consecutive

terms, in the expansion which we want to compute. A solution to the problem

(ibis given in the following Corollary. The idea is to use a perturbed W in
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(5.5) so that the denominator is guaranteed to be non-zero.

Corollary 5.3. If

(i) P(s0,0) = 0, P(S00) + 0,

(ii) W 0  Sol W = 0 + SZ'

then the iterates W( i ) generated by

(5.6) W\ i+ l 
- j(i) f4 P(')) (mod z i+3

p (il))p(w(i" I) )

are well-defined dnd satisfy

ord(E' i ) F

where the F. is the ith Fibonacci number (i.e., F0  0,FI  1 and F i+I i +F
F.M Fi+2

andW W + z

Proof. Consider the case i = 1. Clearly, = W + z2  W(0 ) and

ord(W 1 -W(0 ) ) F Since by the Taylor series expansion,

P - p(w(O)) p, (W(0)) . (j()W(O)) + ... ,

(0)and since P' (W ) has a non-zero constant term Pt (s 0 ,0), we have

ord(P( ( I ) ) - p(w(0))) = ord (1)-W (0 ) ) < F3.

Hence p(1)) A P(14(0)). This ensures that W (2 ) is well-defined by (5.6).

Note that for i = 1 (4.2) holds -ith E(1) replaced by S(.) ( .

Thus,
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ord(E( . ord(E E( 0 ) = ord(E ( ) ) -t- ord(E' 0 ) )

Zmin(or(E 1) , F
) +ord(. F) 3 F3 - F2  F4.

By induction, one can similarly prove that for i=2,3,..., W is well-

defined and ord(E~i ) F+ 2 .

Results similar to Corollary 5.3 hold for other suitably modified itera-

tions with memory, (i.e., iterations with m > 0 in (4.3)).

So far we have only dealt with iteration; of order 1-0. now consider

an iteration with order one. w,, fine

(i+l) 0i p(w()
T.7 ( 0)

\

p' (w(0 )

for i=0,1,2,.... Then

() P(s;)e~i + iP"(s)ei) + "'
(i)l em ( 2

(5.7) e(+) () () -2 '()

p +

p'( + p"(s)e (0) + A

p)(s) ( (s ( e (  (e
p.(s)(+ 2W -s

j0,' O>.tl

where the . are rational e-pressions w,iose denominator.; are poers of

p' (s). This imp] ies that the iteration i , norral and has; order p = 1, We

may use the iteration o;i power ,,ories and obtain the following Lheorcm which

is an easy consequence of (5.7):

Theorem 5.2. If

(i) P(s 0 ,0) 0, P'(s,O 0 0.

(0)
(ii) W = s '
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()W (58 ( i + l ) (z) -l(ij z) - Po(i - (z)) (rood z i + 2 )

(5 8 P I C( 0 )  (z ))

are well-defined and satisfy

ord(E ( i ) )  i+l

and hence the iteration converges.

The iceration (5.8) con be used, for example, to find the initial iterates

-,f an iteration with memory.

p
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6 THE GENERAL PROBLEM: NEVTON POLYGON PROCESS

Recall that our general proLtlem is to compute the value of d and the c'-

efficients s0,sl,.., of an expansion

P=0

of the algebrvic function corre:w.,.nding to a given

P(W,z A (z)W" + ... + A(z).n

In this s,.ction, we show tnat the general problem can be reduced to a regular

probl~m by transforming P(W,z) to ;(jme P(W,z). The regular problem can then

be :olved by normal iterations, as described in Section 5.

Since P(s0,O) 0, s0 can be obtained by finding a zero of the numerical

polyno'nial P(W,0). In this section we as'ume that finding a zero of a nluwer-

1caL polynomial is a primitive operatio-i. (fihis assumption will he remo',-d

in the next se'ti,,n bv carr,'inn the 7cros :ymtbl Ical ly.) If P'(so,O) 4 0,

we have a reg,,ai .pahem sol\'Ile by a normal teration. Hence we a.s-ifmo

that P'(SoO) e. lhn "0 i; a 'I tip]e / 'ro of the l.,aicrical polyn,'"iaL

P(W,O) and there is i,2or( than one (: nansion of th, algebra i function start -

inq, with s0 . We we,,, not expect an iteration startin(; with 1. 0 ) = S

converge since the i:era t-ion i, ould not "know" to which explt:islo it slioiild

converge. Int Luitive I y the c onvern.. eo of an i U ration rcjl i re; h- t i t

start with an initial segment * a unique expansio . i:i ,*A . tlt \,,

find an initial segment of a unique expau! ion rtin wgJth " Ifl existenCe

of the segment is guaranteed only if no ', expansioiw coincid.,, i.e., ,

I.e., zeros of a polynomial can !,e couput-cd to any prespecificd prec ,
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discriminant D(z) of P(W,z) with respect to W is not identically equal to zero.

Therefore, in this section we shall assume that

D(z) / 0.

The assumption holds when P(W,z) is irreducible or simply when P(W,z) is

square-free (Walker [1950, Theorem 3.5]). Hence we can make this condi-

tion hold by using factorization or square-free decomposition algorithms

but do not pursue this here.

A classical method for finding an initial segment of a unique expansion

uses a geometric aide known as the Newton Polygon, which provides a conveni-

ent tool for analyzing a set of inequalities. (Some authors refer to Puiseux's

Theorem because of the work of Puiseux [1850] but clearly the idea originated

with Newton [1670, p. 50].) The method has not been subject to algorithmic

analysis.

We state the Newtcn Polygon Process adapting, with some modifications,

the description in Walker [1950]. In Theorem 6.1 we show that the Newton

Polygon Process transforms the general problem to a regular problem. Theorem

6.1 also gives the connection between the number of identical terms in at

least two expansions and the number of Newton Polygon stages. Theorem 6.2

gives an a priori bound on the number of stages which differs by at most a

factor of two from the optimal bound. Example 6.1 shows that in general

P(W,z) must be transformed to a new polynomial P(W,z); it is not enough to

compute an initial segment of a uniqu expanqion and use it as the initial

iterate for a normal iteration on the original polynomial P(W,z).

In the follo':ing algorithm, let Ai, (z) be the coefficient of Wi in

fik i,k
P(W,z). If Ai (Z) ! 0, let a i,k be the lowest degree term in A
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Newton Polygon Process

NI. k - 1, Pk(Wz) - P(Wz).

N2. Plot the points fik = (i-li) the xy plane for i such that

A i,k(z) .0. Join fn,, to fn,k with a convex polygon arc each

of whose vertices is an fk and such that no f lies below any
i~k i'k

line extending an arc segment.

N3. If k - 1, choose any ;e()rroft y + v1 x = kof the arc. If k - 1,

choose a segment with -,- > 0. (Such a segment always , st-.)

Let denote the set of indices i for which f lies on the

chosen segment. Solve the polynomial equation

(6.1) , a.kX = 0.

iEgk

Let ck be any of the non-zerc roots. (Such a non-zero solution

always exists.)

N4. If Ck is a simple zero, go to N6; else go to N5.
.k k

N5. Pk+l(Wz) - z . (W+Ck ),z), k -- k+I. Go to N2.

N6. t - k. (Hence t represents the number of stages taken by the

Newton Polygon Process.)

P(W,z) - z p (z t~ q )

P(W'z) -. P(W,z d) ,

where d is the smallest common denominat,,r of C
be zero. If yl = 0 we assume that has ne as its denowiiator.)

Terminate the process. I



-23-

Lemma 6.1. After the Newton Polygon Process terminates, the following

properties hold:

(i) The coefficients of P(W,z) are polynomials in z.

(ii) (" is a simple zero of the numerical polynomial P(W,O).
t

Proof. Lt is easy to verify (i). To prove (ii) we show that

P(W,O) a.t i

-t

For notational convenience, let -Yt -i a. ai -- g

and let denote the set complementary to g with respect to

Let

(W, = (n + Qn (Z))W n + + (z)),

where ord (Q > I Then

t'(w,z) aiW itz 4- :,. Q.(z)W

Since B = ., +~ 1/ o. ', -4 (-g, Vj E g,
i =

P (W,UJ) =P(W,O) a.W .

Theorem b.l. After the Newton Polygon Process terminates, the following

properties hold:

(i) The general problem of computing an expansion S(z) of the algebraic

function corresponding to P(W,z) has been reduced to the iollowing

re,,t tar probIem: Compute the expansion S(z) starting from c
L.
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for the algebraic f,,nction corresponding to P(.,zl. Then

let

t- 1

i 1.WCZ3+ 1 (z d)

(ii) S(z) is tie unique expansion with starting segment ) c.z

(iii) There is more than one expansion which starts with ciz

for every j < t. That is, there are at least two expansions

which coincide in their first t-I.terms.

Proof. By Lemma 6.1, we conclude that the problem of computing S(z) is regular.

(Note that the leading coefficient of P(W,z) may vanish at z = 0. See Remark

A d
5.4.) (i) follows from P04,z) P(W,z ) and

0 ~ ~~L 11 l+.+i YI .*P¢W,z) =z ciz +- Z•w'

(ii) and (ii- hold since the Newton Polygon Process does not terminate

until ct is a cimple zero. p

t Vi+...+V

Since there is only one expansion which starts with z ci z
L i

we might expect that if th.s segment is taken as the initial iterate

for a normal iteration then the iteration on the original polynomial P(W,z
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rather than on the transformed polynomial P(W,z) will converge. The follow-

ing example shows this not to be the case; in general we must use the trans-

formed problem.

Example 6.1. This problem appears in Jung [1923, p. 29] although it is not

used to illustrate the point we wish to make here. Let

2 3W 1 z+j2 +4
P(W,z) =W (2+z+z) l+z+-z + z

The two expansions are

(Z) 3/2 z + - +3/2

1+ + ... , S2(z) 2 2 2 -3

Suppose that we want to compute Sl(z) by the Newton-li'.e iteration. If we

take W(0) 1 + 1z + z3/2 in

(i+l) (i) P(i),Z)

: wefnW ( I) =i+ Iz - 15/2 +W(1) dfesfo

we + .... differs from S1 even in the co-

efficient of z3/2. Though there is only one expansion starting with W ( , namely,

S1, the Newton-like iteration starting from W(0) does not converge to S1. U

We illustrate the Newton Polygon transformation, the transformations of

Section 2 and the iterative process with another problem in Jung [1923, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding
• . 3 2

to P(Wz) - -W + zW + z around z0 
= Co. The first transformation of Section

2 3
2 converts P(W,z) to -z W + zW + 1, which is then coaverted by another

.W3

transformation to + zW + z. The Newton Polygon Process yields
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3t -, = 1, y1  1/3, c, i, d - 3 and P(W,z) -W + W+ 1. Take

W(0) = 1. Then the Newton-like iteration (5.3*1 applied to P(W,z) gives

S(1) + /3W (2 )  1 + z/3 -z 3/81.
Thus

s(z) = .z/3g(z1/3) = zl/3 z z2/3/3 -4/'/81 +

Let T(z) = S(z)/z - .2/3 + z1/3/3 . z1/3/81 + .... Then an expansion of

the given problem is

T 1) z2/3 + zl/3 1 -1/3 +
T(-)z .o.z
z 3 8

The other two expansions are

2/3 +o2 1/3 e -1/3

3 81

2z2/3 + _1/3 _e
2  1/33 81 z + ...,

where 0 is the primitive third root of unity. U

The following theorem gives an a priori bound on the number t of stages

in the Newton Polygon Process which differs by at most a factor of two from

the optimal bound.

Theorem 6.2.

(6.2) t . ord(D) + I
I

Furthermore for all t there exist problems for which t 2 ord(D).

Proof. The theorem is trivial if t = 1. We assume that t z 2. Then by

(iii) of Theorem 6.1, there are at least two series expansions S1 and S2

which agree in the first t - I ncu-ze" terms. Write
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a.CO

b.
1

2 =. 2 ,biZ
i=l 1

where the [ai], [bi ] are strictly increasing non-negative integer sequences

such that none of the s , s vanish and sl,a. = a b
la 2,b i  1 12,b i/ /d 2

for i1,...,t-l. Without loss of generality, assume d d2 . Note that the
1 2'

cycle which contains S has the series:

+1

a.

S 1  Ilal 1

and the cycle which contains S has the series:
2

b.
1

jbi d

i1 2

sihr S2,j i=S 2,b.-2 '.z ,j=0,...,d 2- 1,2 .

where 2 "-1 2 1 -,

41 = e I and 2 = e

Note that we do not rule out the possibility that S, and S2 are in the same

22

cycle and that therefore the cycles [SI~j1 and S,)] are identical. Since

gl~a  - c' 2 = e

Sand a /d, bi'd2 for i-l,..t-l, l and S,, agreu in the first t-I terms

2 H e c e

for 0,.,g. Hence,
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ord(S -s ) =
K ,j '2,j d d

2 1 2
Lot

d -1

(Z) (S (z)-S 2 (z))

Then

ord(D) ord(V)

I ddl( -- +

1 2
>a +I1.at-I+

since the (a is a strictly increasing non-neg&tive integer sequence,

at1 t-2. Thus, ord(D) > t-I which establishes (6.2). Let

t
i t

S (Z) ,.zi, S 2(z) SI(Z) z

22

j=0
,ind

P'(w,z) = (W- s, (z)) (W-s2 (z)).

By Theorem 6.1, the Newton Polygon Process has t stages. ord(D) = ord((S 1-S2)
2) = 2t

which completes the proof. m

Theortm 6.2 gives a coi; iitable a priori bound but requires the c'omiputa-

tion of ord(D). A very cheap bound is given by

Corollary 6.1.

t m(2n-1) + 1

where m - max ((dog A.).

n il-

Proof. D(z) is a determinant of order 2n-1 whose elements are polynomials

of maximal degree m. !hrncc D(z) is a polynomial of degrece at most m(2n-l).

Since D(z) cannot: \,,iist) identically, ord(D) ! ii(2n-1) .
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7. A SYMBOLIC MODE OF COMPUTATION

The Newton Polygcn Process involves computing roots of polynomial equa-

tions (6.1). Instead cf actually solving the equations, in this section we

carry the roots symbolically through their minimum polynomials. We assume

that the underlyin field A is one where exact arithmetic can be performed such

as a finite field or the field Q of rational numbers. Then the expansions can

be computed symbolically with e:,act arithmetic. The following example, where

A is taken to be Q, will illustrate the idea.

Example 7.1.

P(W.z) W + (z+z)W - 2zW 2z

We shall compute an expansion of the algebraic function corresponding to

P(Wz), using exact rational arithmetic. The first stage of the Newton

3 2
Polygon Process yields yI = , = 3 and c1 + c1  2c 2 0. Since

c 3 +2 2c 2= ( 1 = c' or -1. Suppose that we are

interested in the expansion starting with or -E. instead of using an

approximation to 12 or we carry c symbolically through its minimal

2
polynomial M1 (x) x - 2. That is,

2 2=

(7.1) cI  -

Since the equation has only simple zeros, the Newton Polygon Process termi-

iates with t = 1, and

P(Wz) -z3P(zWz)

= W + (l+z)W - 2W- 2.

We use the Newton-like iteration (5.3) to compute S(z) such that 0(S(z),z 0.
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Let W 0 (z) W c Then

S -2-

W( 1) (z) c 1 - 2 1 (mod z)

3c2+2 (l+z) c1-2

Using (7.1), we obtain

((i)

W(1 (z) =cI  z.

Similarly all coefficients cf z in W i (z) can be represented as linear

polynomials in c with rational coefficients. By (il) of Theorem 6.1, a

solution to the given problem is

S(z) -S(z) c -1Z2 +

which represents both the numerical expansions starting with ^5z and .-̂ z.

In gene'al, when the Newton Polygon Procesb is performed, ck' k1,...,t,

can be carried symbolically through its minimum polynomial Nk(x) over

Q(c],...,Ck). Then all the coefficients of the expansion S(z) are in the

extension ficl.d Q(cl,...,ct). To simplify the c-rnputation, one can compute

from Mk(x) the minimum polynomial M(x) for c, where c is a primitive elemenc

of the extension field Q(cl,...,ct), i.e., Q(c) = Q(cl,...,ct). Then the

coefflciegt of the expansion S(z) can all be represented by polynomials of

the form _ qic , where h = dog i and q. ( Q. S(z) can be computed entirely

1=0
with exact arthmetic . Furthernore, S(z) give a simultaneous repreOnLativu

of h numerical expansions; S(z) can be used to produce h numerical

expansions by substituting zeros of M(x) for c in th, coefficients of S(z).

(This implies that Ii : n.)
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8. ASYMPTOTIC COST ANALYSIS

In this section we analyze the cost of computing the first N terms

(including zero terms) of an expansion for large N. Since the Newton

Polygon Process is independent of N. by Theorem 6.1 we can without loss of

generality assume the problem is regular. Furthermore, since the asymptotic re-

sults will be the same for any normal iteration with order greater than one,

we shall assume that the iteration (5.3) is used. Our cost measure is the

number of operations used over the field A. If we carry zeros symbolically as

*~i described in 6ection 7, then we work over an extension field A(c) rather

than A. If the minimum polynomial for c is of degree h, then operations

2
in A(c) are more expensive than in A by a factor of O(h) or O(h2).

Since h is independent of N, in our analysis we shall not be concerned with

whether or not zeros of polynomials are carried symbolically.

Let M(j) be the number of operations needed to multiply two jth degree

polynomials over the field A. Assume that M(j) satisfies the following mild

condition: there are a, $ E (0,1) such that

(8.1) M(r, j'l) - M(Fj1l)

(i)
for all sufficiently large j. Observe that W (z) is a polynomial of degree

at most 2 - 1, and that the computing W (i+)(z) by (5.3) takes O(nM(2 i-))

operations. Hence the total cost of computing N terms in the expansion is

O(n(M(N) + M(rN/21) + M(FN/41) + ... )), which is O(nM(N)) by condition (8.1). (See

Brent and Kung [ 1976, Lemma 1.1].) We summarize the result of this section

in the following
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'dicorem 8.1. The first N terms of an expansion of any algebraic runction

can be computed in O(nM(N)) operations ever the field A.
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9. EXAMPLES

We -:hoose as our examples calculation of the Legendre pulynonia!s

through their genernting function, solution of an equation with transcen-

dental coefficients, and calculation of the expansion of a comFlete ellip-

tic integral. Although the first two examples are not covered by the theory

of this paper, they are covered by easy extensions of our results. Examples

9.1 and 9.3 are illustrations of the many applications of algebraic function

expansions.

We use the Newton-like iteration (5.3) in all three examples with the

notation:

Pi P(i)(z)z P' I (W(i)( i ) "
Ww----(Z),Z) (W(  z) i = Pi/Pi

Within each iteration step we exhibit enough terms so that W(i) (z) car. be

icomputed to 2 -1 terms.

Example 9.1. Legendre Polynomials

The generating function for Legendre polynomials,

(l-2tz+z 2= L. (t)z

i=o
satisfies

P(W,z,t) (l-2tz+z 2)W - 1.

Take W(0) = I. Then

P0 
= -2tz, P. = 2, 60 = -tz, W ( ) = l+tz.

P = (l-3t 2)z2 + (2t-2t 3)z3 P' = 2(l-tz), 81 =(l-3t2)z2 + l(3t-5t 3)z3

W(2) 1+ tz + 2(3t- + z .
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Hence the first four Legendre polynomials are

L0(t) - 1, Ll(t) = t, L2(t) -f -1(3 t2_-1) and L3(t) 1(5 t3 -3t).

01 u 2 an 1 3

B. Neta, a student at CM, computed the first 32 Legendre polynomials

by this iteration using MACSYMA.

Example 9.2

PQ4,z) W 2 + (z+l)W + sin z.

Note that sinzz-Ti-+ 5' 7. + .... Take W (0)  0. Then3 5t 7!

r Z ' = 1 60 =Z, W -Z,P0 ,P0

3 3
z 2  + 1---. M

1 6 6

Example 9.3. A Complete Elliptic Jntegral

Define the integral by

t) = 2 (-2 sin2  /2
M r2(l-t si ) /d9.0

Le t

P(Wz) (l-z)W 2 - 1, z t2  .2

Take W(0)  1. Then

PO 1- P' = 2 , = z (1) +

.1 13 2 32 5 3

(2) z 3 2 1. 3

W(2) is an initial seqnw, L of the alebraic function S(z) correspondi:m,, to

P(W,z). Since
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2 2 2f~t =fS(t 2 sn e)dA,
0

f (t) +1 2 3 4 5+ 6+
0 l+ 1t + Pr2t 16~l

where

0

For this simple example the result can be obtained directly by a binomial

expansion but this cannot of course be done in general.U
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I5. The field, A, need. not be restricted- to the compiele time field.

It is of pArticular initeirest to extend all1 the results to finilte

I 6. An important comptationial model is the "ifully, sjiboli o66e whedre

the coef f ic ents of the ,exojinsion series 'are expressed As functious

of the iiput coef ficieftt.

-Pei'rformi conipiexity-analysis whichiiicludes the cost due6 to, the

'growth" of oe ffic-ebn t§.
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